Finite-dimensional non-commutative Poisson algebras
نویسندگان
چکیده
منابع مشابه
Finite - dimensional non - commutative Poisson algebras ]
Non-commutative Poisson algebras are the algebras having an associative algebra structure and a Lie algebra structure together with the Leibniz law. For finite-dimensional ones we show that if they are semisimple as associative algebras then they are standard, on the other hand, if they are semisimple as Lie algebras then their associative products are trivial. We also give the descriptions of ...
متن کاملFinite Dimensional Quotients of Commutative Operator Algebras
It is shown that the matrix normed structure of a non-unital operator algebra determines that of its unitization. This makes the study of certain unital operator algebras much easier and provides several interesting
متن کاملNon-commutative Poisson algebra structures on affine Kac-Moody algebras
Non-commutative Poisson algebras are the algebras having an associative algebra structure and a Lie structure together with the Leibniz law. The non-commutative Poisson algebra structures on the infinite-dimensional algebras are studied. We show that these structures are standard on the poset subalgebras of the associative algebra of all endomorphisms of the countable-dimensional vector space T...
متن کاملNon-commutative Gröbner Bases for Commutative Algebras
An ideal I in the free associative algebra k〈X1, . . . ,Xn〉 over a field k is shown to have a finite Gröbner basis if the algebra defined by I is commutative; in characteristic 0 and generic coordinates the Gröbner basis may even be constructed by lifting a commutative Gröbner basis and adding commutators.
متن کاملNon Commutative Finite Dimensional Manifolds Ii: Moduli Space and Structure of Non Commutative 3-spheres
This paper contains detailed proofs of our results on the moduli space and the structure of noncommutative 3-spheres. We develop the notion of central quadratic form for quadratic algebras, and a general theory which creates a bridge between noncommutative differential geometry and its purely algebraic counterpart. It allows to construct a morphism from an involutive quadratic algebras to a C*-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 1996
ISSN: 0022-4049
DOI: 10.1016/0022-4049(95)00151-4